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SHOCK-WAVE DIFFRACTION BY A WEDGE MOVING 
A T  SUPERSONIC SPEED 

K, A, Bezhanov 

ABSTRACT: The paper studies the diffraction of a shock wave of 
arbitrary strength caused by the upper surface of a wedge moving 
at supersonic speed by assuming that the intensity of the shock 
wave and the attached compression shock as well as the wedge 
angle and the angle of shock incidence differ but little from each 
other. 
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A study is made of the diffraction of a shock wave of arbitrary intensity by the up- /631* - 
per surface of a wedge moving at supersonic speed, under the assumption that the inten- 
sity of the shock wave and of the attached compression shock and also the wedge angle CY 
and the angle of shock incidence 6 are  but little different from each other (Fig. 1). 

The case of flow over a wedge moving at  supersonic speed with a plane shock wave 

tained for the case of flow with constant parameters 
in a region AFK bounded by the on-coming shock 
wave, the compression shock attached to the wedge 
and the wall of the wedge. 

incident on it, without diffraction, was examined in [l]. In this paper conditions were ob- 

Studied in [Z] was the diffraction of a shock 
wave of arbitrary intensity by a thin wedge moving 
at supersonic speed; in [3] a study was made of the 
diffraction of a weak wave by a slender wed,, me mov- 
ing at  hypersonic speed; also studied** was the dif- 
fraction of a weak wave by an arbitrary wedge mov- 
ing a t  supersonic speed. 

1. Statement -- of the Problem. Obtained as a 
result of the application of perturbations to a flow Fig. 1. 

with constant parameters is a diffraction pattern 
bounded by the shock wave AB, the compression shock CD, the wall of the wedge AE and 
the arcs  BC and DE of a Mach circle whose center 0 moves along the wall of the wedge 
at a flow speed of Uo-U behind the shock wave AF, where Uo is the velocity of the shock 
wave and U is the velocity of the shock wave relative to the flow behind it. The problem 
is formulated in a coordinate system Ox'y' linked to the moving center of perturbation 0, 
coincides with the point of intersection of the bisector of the angle AFK with the wall of 

*Numbers in the margin indicate pagination in the foreign text. 
**S. M. Ter-Minasyants: Diffraction of a plane wave by a wedge moving at superson- 

ic speed. Candidate's dissertation, Moscow State University, 1967. 
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the wedge. In this coordinate system the unperturbed gas in the region AFK is in a state 
of rest. The problem being examined is self-similar in time t. We linearize the equa- 
tions of plane unsteady gas motion and introduce the dimensionless variables 

where ut, v', p' are the perturbed velocity components and the pressure perturbation, - /632 
and al and p1 a r e  the speed of sound and the unperturbed density in region 1. 

We represent the equation of the perturbed front of the shock wave AF in the form 

2 = li +$ (y) 

When x = k the relations on the shock wave AB will take the form 

Here a. and V are the speed of sound and the flow velocity in the region 0, D1 and 
E a r e  known constants dependent on the perturbed parameters uo, vo, po and po ahead 
of the shock wave in the region 0. 
1 

Equations (1.1) can be written in  the form 
- 

Here F1 is a known constant and y is the heat capacity ratio. 

Analogous relations can be written on the compression shock K F  for y cos p x  sin P=k. 

The flow in region 2 is known and corresponds to flow over a wedge at a velocity 
V2-V1, where V is the velocity of the wedge and V2 is the flow velocity behind the inci- 
dent shock wave. 

1 

Flows with constant parameters in the regions 3 and 4 a re  completely determined if 
relations (1.1) a re  written on the slightly divergent rectilinear segments: 

shock wave FB 
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compression shock FC 

y COS fi - x sin fl = k + (y - yF) ctg (b - Q) 

the condition on the weak tangential discontinuity FO for y =xtan'1/2 6, is 

k!3yF - V 3 x F  = ugyk - v4x 

( x F  = k, y F  = k t g  ' 1 2  80, 8, ' 1 2  fi fi) 

on which the pressure and the pressure derivatives are constant [2]. 

3' These relations yield seven conditions for determination of the seven unknowns u 

u4' v3, v4, el, c2 and p3 = p4' where E and E are  small angles of divergence of the 1 2 
shock wave and the compression shock. 

2. Formulation -- of the Problem -- for the Function 2. After linearization of the equa- 
tion and Chaplygin transformation the problem reduces to a Laplace equation for the pres- 
sure perturbation. The region corresponding to the diffraction region goes over to an or-/633 - 
thogonal curvilinear pentagon ABCDE in the plane z = r exp i B = p +iv bounded by four 
a r c s  IT. of a circle and a straight line (Fig. 2).  

pressure derivatives 143 
The boundary conditions a r e  written for the normal and tangential components of the 

f 
-. . 

a =6 (e ,  0), ~ b = 1 - on AB 

A X a =6 (0, e,), b = 1 on CD 
a = 1, ' b = O  onAE 

b = 1 on BCandDE 
Here a = 0 ,  

.. - E 

Fig. 2. 
where 

and the equations of the a rc s  AI3 and CD of the circles have the form, resp. 

k (1 + ?) = 2r cos 0, IC (1 -k ?) = 2r cos(0 - 0,) 
The coefficient a of ap/an goes to infinity at the points N E  AB, L and Q €  CD for 
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Integrating the second condition of (1.2) along the shock wave AB and considering 
that y = k tan x when x = k, we get 

7/ 

- 
8 c@LEf- C- 

The conditions which must be fulfilled along the compression shock CD have the 
form 

principle into the first quadrant. The function 
which realizes the conformal mapping onto the 
upper half-plane will be an automorphic func- 
tion whose analytic image has the form [S, 61 

8 
A 
-\ 

\ 

\ ,'-' \ ,) \ 

- .L.+.L - 

F 

s dP= Pz-Pp3 
CD 

The boundary problem we have obtained can be solved by mapping the curvilinear 
pentagon ABCDE onto the upper half-plane. 

3. Construction of the Function that Maps the Curvilinear Pentagon onto the upper -- - -- Half-Plane. By means of the bilinear transformaTon 

k l=  fT=7? 1 - ( I t  -f- i k l )  2 c =  z-kkikl  7 

the curvilinear pentagon ABCDE is mapped onto the second quadiant minus one quarter 
of the unit circle with center at the origin and minus one-half of a circle of radius d with 
center on the real axis at a distance of -c from the origin (Fig. 3) /&g 

__ . . 

Consequently, w is an automorphic function whose group is formed by bilinear sub- 
stitutions. These substitutions are  determined from various products of the basic sub- 
stitutions 
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The general form of the mapping function (3.1) can be represented also as 

We find the coefficients pn and tn, calculating a series of various products of the 
basic subs ti tu tions 

etc. ; the law of formation of the coefficients is obvious. The series converges faster 
the smaller the valve of the parameter d/c contained in (3.2). 

Given here is a simultaneous solution of the problem of flow past three cylinders 
of radi i  d,  1 and d. The function w ( 5 )  is the complex velocity potential, pn is the power 
of the doublet, and 5, is the coordinate into which it is imbedded. The intensity of the 
images of the doublet decreases; in fact, it decreases very rapidly with decreasing d/c. 
If in the expressions for p the squares,are replaced by cubes, we get the potential of the n 
flow past the three spheres. A partial case of this problem, namely, flow past two spheres, 
has already been solved by Stokes by the method of successive approximation, in which 
doublets of given power pn were placed at the points of inversion tn relative to the two 
spheres [7]. 

The final expression for the function which maps the original curvilinear pentagon 
onto the upper half-plane has the form 
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4. Formulation Solution of the Hilbert Problem. We introduce the 
function 

which is regular in the upper half-plane w = T + icr and satisfies the condition 

on the real axis. Here 

where 

b = 1, 
2, = 1, 
t = 1, 

-b = 0, -l<T<O 

b = 1, O < T < b o  

- -oo<T< - ( c  3 - 4 2  
.-(c 4 d)3<T<-(C - d)2 
-(c - q < z <  - 1 

The coefficients a and b have discontinuities of the first kind at the points T = -1 
and 7 = 0, and the coefficient a also has discontinuities of the second kind at the points 

T~E(O, C O ) ,  T~ and 7 3 ~ [ - ( c  + d)  , -(c-d) 1; the points 71y T~ and T~ corresponds to the 
points N, L and Q of the plane z. 

2 2 

/636 The exchange of function - 

where 
eliminates the discontinuities of the first kind at  the points 7 = -1 and T = 0 (see, e. g., 
141). The Hilbert problem is solved by reduction to the Riemann problem and the points 
T 7 and T~ will be singular points [8, 91. Then the index of the problem 3 . ~  = 3 and the 

solution of the Hilbert problem having a second-order zero at infinity has the form 

is any branch regular in the plane with discontinuity on the real axis, 
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Here 

G (T) = 1, 
G (T) = 0 (8,' e,), 
G (T) = 1, 
G (7) =@ (8, 0 ) ,  

--oo<T<-(C +dy 
-(c+ d)2<T<-(C- d)2. 

-(c - d)2<7;<0 
O<T< 00 

where by In (T + i) (7 - i)-l is meant a branch which varies continuously on the real  axis 
(including the point at  infinity), except for a certain point 7 E(-w, w )  which does not 
coincide with any of the points of discontinuity of the coefficients a and b, and lnG(7) is 
determined according to the following rule: 

0 

The real constants co, c and c2 are  determined from conditions (2.1) and (2.2).  

The solution in the plane z has the form 
1 

r - is the contour of ABCDE 

r csp io = P (cos o - . j G o Z i C F )  esp i ~ )  
on A B  (0< 8 <  dl, 0, = are cos k) 

on CD (8, - 8, c 8 < 0, -+ 0,) 
z exp ie = IC-1 (COS (8 - e,) -  COS^ (e - e,) - k2) exp ie . 

- - 

The pressure is computed by the formula /637 - 

Having determined the pressure, all the remaining unknown functions can also be 
found in closed form. For example, the shape of the diffracted shock wave AB is __ -- 
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computed from (1.1) by the formula 

I (kl) being known from the solution of the problem in region 4. 
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